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Better Lost in Transition Than Lost in Space: SLAM State Machine

Mirco Colosi Sebastian Haug Peter Biber Kai O. Arras Giorgio Grisetti

Abstract— A Simultaneous Localization and Mapping
(SLAM) system is a complex program consisting of several
interconnected components with different functionalities such as
optimization, tracking or loop detection. Whereas the literature
addresses in detail how enhancing the algorithmic aspects of
the individual components improves SLAM performance, the
modal aspects, such as when to localize, relocalize or close a
loop, are usually left aside. In this paper, we address the modal
aspects of a SLAM system and show that the design of the
modal controller has a strong impact on SLAM performance
in particular in terms of robustness against unforeseen events
such as sensor failures, perceptual aliasing or kidnapping. We
preset a novel taxonomy for the components of a modern
SLAM system, investigate their interplay and propose a highly
modular architecture of a generic SLAM system using the
Unified Modeling LanguageTM (UML) state machine formalism.
The result, called SLAM state machine, is compared to the
modal controller of several state-of-the-art SLAM systems and
evaluated in two experiments. We demonstrate that our state
machine handles unforeseen events much more robustly than
the state-of-the-art systems.

I. INTRODUCTION

SLAM is a fundamental skill for mobile robots in var-
ious application domains. After decades of research and
significant progress, SLAM has become a mature and well
understood problem with a commonly used system decom-
position into front- and back-end and problem formulation
as a graph optimization and probabilistic estimation task, see
e.g. Cadena et al. [1]. However, despite these advances, most
state-of-the-art SLAM systems are unable to readily deal
with the variety of situations that a real robot encounters
when exploring an unknown environment autonomously.
Unforeseen events such as collision with obstacles, sensor
failures, kidnapping, perceptual aliasing or semi-static map
changes may occur at any time. Past research has typically
focused on the component level to deal with such events,
for example by increasing robustness of back-end solvers or
data association techniques.

In contrast, we address this problem on a system level as it
appears natural to represent and reason about above events as
modal states in a system architecture. We tackle the questions
of (i) how a SLAM system should be designed on archi-
tectural and decision-theoretical level and (ii) how design
choices in that architecture may impact SLAM performance.
We analyze prominent state-of-the-art SLAM systems and
propose a taxonomy of the components of these systems. In
addition to the component view, we highlight for each system
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the modal aspects that control the interplay between these
components. This interplay can be seen as a set of rules that
depend on the status of the components over time. We model
these rules as an extended finite state machine [2] whose
states represent specific modes of a SLAM system such as
localized, lost, or initializing. Transitions occur as a response
to asynchronous events or verified conditions. Asynchronous
events may be raised by user interactions. Conditions are
evaluated based on the outcome of the processing modules.

We restrict our study to graph-based SLAM systems and
focus on a set of well-known approaches [3], [4], [5], [6],
[7], [8], [9]. For each of those systems, we conduct, when
possible, both an open- and closed-box analysis. The open-
box analysis consists of a literature review and the inspection
of the open source implementation, if available. The closed-
box analysis is a performance evaluation on multi-sensor
datasets that contain relevant levels of difficulties, including
rare corner cases. Finally, by combining the strengths while
avoiding the weaknesses of related work’s state machines, we
propose our SLAM state machine as a modal controller for a
generic SLAM system and hypothesize that this architecture
leads to improved SLAM robustness under wider ranges
of experimental conditions. To the best of our knowledge,
the only work in the SLAM-related literature which uses a
state machine as a behavioral controller is Torres-González
et al. [10]. In their work, a simple state machine controls
the system to reduce resource consumption when the map is
already built and the system is affected by low noise level.

II. UML STATE MACHINE NOTATION

In this section we describe the formalism we used to
capture the modal behavior of a SLAM system. As men-
tioned in the introduction, we rely on an extended finite
state machine. Specifically, we formalize the taxonomy and
representation of our architecture as a behavioral UML state
machine [11]. This formalism supports features such as
hierarchically nested states, orthogonal regions, entry and
exit actions of states and internal transitions. Using these
features leads to a compact and clear representation of the
system. We summarize the UML state machine formalism
focusing on the concepts used in our work.

The evolution of the system results in a traversal of the
states. The system can leave a state and enter a neighboring
one according to the traversed transition. The base element
of the state machine is the vertex, which can be either a
pseudostate or a behavioral state. Pseudostates have prede-
fined behavior encoded in the language. Examples include
the inital and the terminate pseudostate which model the
entry and exit points of our state machine. Behavioral states,
in contrast, are specified by the user and allow to describe
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Fig. 1: Graphical representation of main UML elements

Fig. 2: Simple example of a working automatic door.

an arbitrary set of actions that are executed while in a state.
The types of behavioral states we use are:
Simple state: is a vertex without substates. A simple state

[Fig. 1a] is defined by a name, a set of internal activities
usually organized in entry, do and exit actions, and a set of
internal transitions, which are triggered by specific events
and protected by boolean guard conditions.
Composite state: is a vertex that contains regions. Each

region has a set of vertices and transitions. A composite
state [Fig. 1b] is defined by a name, a set of regions and
an optional pair of internal activities of the type entry and
exit action. The contents of different regions are executed
in parallel. While in a region of a composite state, it is not
possible to migrate in another region of the same state.
Directed relations between a source and a target vertex are
called behavioral transitions [Fig. 1c]. Traversal is triggered
by the occurrence of specified events and is executed if the
conditional guard of the transition is verified. Upon traversal
an optional behavior is executed.

We provide an example of a simple UML state machine
for illustration [Fig. 2]. An automatic door has a sensor that
can detect a person approaching the doorway and can be
locked with a key. The door can check both the condition of
the sensor and the locker. A person with the key can lock
the closed door. If the door is locked, the person detector is
disabled. When locked, the system polls on the locker status.
Unlocking the door activates the person detector and brings
the system in the closed state. In this state, the system polls
the person detector. If a person is present, the door opens and
remains in the opened state until the person is not present.
When this occurs, the door is closed again and the system
moves to the closed state. From this state, the door can be
locked again or it opens upon people arrival.

III. TAXONOMY OF SLAM COMPONENTS

A modern graph-based SLAM system consists of several
processing modules and a set of shared data structures. In this
section, we present a novel taxonomy that characterizes the
set of components typical for the SLAM systems considered
here.

The primary task of a processing module is to perform
computation on the input data and to potentially modify some
data structure such as the map. Computations may fail due
to defective inputs or processing errors. Each module reports
a set of variables that contain the status and the result of
the computation to a modal controller (e.g. a state machine)
which determines the best next action to take.

The map in these systems is represented as a pose graph,
where each node represents a geometric transformation.
Typically, each node is connected to a local representation
of the environment consisting of scans, aggregated scans,
point clouds, keyframes or combination of them. Edges
in the pose graph denote relative transformation estimates
between nearby local maps. These transforms are inferred
either directly from the sensor data or by registering local
maps between spatially close nodes. We will use the term
local map to refer to the map information stored in a graph
node. Local maps can also contain (or consist of) discrete
entities in the world such as geometric primitives or objects
to which we refer as landmarks. Landmarks can be shared
among different local maps.

With reference to Tab. I, the following processing modules
are typical in a modern graph-based SLAM system:

Raw Data Preprocessor: is the module that processes raw
sensor data and takes care of the synchronization of multiple
sensor streams. These operations include odometry interpo-
lation or IMU pre-integration. The raw data preprocessor is
also in charge of performing per-datum operations such as
feature extraction or denoising. The main purpose of the raw
data preprocessor is to present the subsequent modules with
data at an adequate level of abstraction, that are spatially
coherent and temporally synchronized. We will refer to the
output of this component as a measurement.

Initializer: operates on the output of the raw data pre-
processor by aggregating data until sufficient conditions to
start the rest of the system are met. A typical instance of
this module in monocular SLAM systems is Structure-from-
Motion (SfM) for estimating 3D structure from a sequence
of images. The initializer notifies when it is ready by setting
the initialized flag to true.

Aligner: is in charge of determining the relative transforma-
tion between two measurements or between a measurement
and a local map. For instance, a monocular system might
rely on a point-to-point aligner that registers a set of 3D
points onto their image projections, or an ICP algorithm
that determines the similarity transform between nearby point
clouds. The aligner is the core algorithm that performs the
registration and has no notion of state. In a SLAM system
multiple aligners might co-exist and are used within more
complex modules such as the Tracker or the Loop Detector.



Component Input Output Status/Error Conditions

Raw Data Preprocessor Raw Measurements Measurements,
Features

-

Initializer Measurements,
Features

Initial Local Map initialized is set on success

Aligner Local map, Measurements /
Local map, Local map

Transform,
Statistics

-

Map Merger Local map, Measurements,
Transform

Augmented Local Map -

Tracker Local map,
Measurements

Transform in Local Map able_to_track set on success

Loop Detector Global Map, Local Map /
Global Map, Meas.

Set of Closure Candidates
(spatial constraints) -

Loop Validator Set of Closure Candidates Set of Valid Candidates
able_to_localize set to true

if a valid loop closure is found

Global Optimizer Set of Valid Candidates
Global Map Optimized Map

consistent_map set false if
uneven distribution of resitual error in map

or outlier rejection routine fails

TABLE I: Taxonomy of the components of a SLAM system. The table summarizes for each comonent, the input and the output as well
as the error/status conditions that are captured by boolean variables affected by the computation.

Map Merger: is the module responsible for integrating
the current measurement into the local map upon successful
registration. The map merger may carry out straightfor-
ward averaging of points, or implement more sophisticated
schemes ranging from structure-only Bundle Adjustment
(BA) to full BA at local map level. The map merger extends
the local map by refining the geometry of the landmarks and
augmenting their appearance information.
Tracker: estimates the current position of the robot in the

local map. Common visual odometry or incremental scan
matching routines fall into this category. They usually rely
on an aligner that registers a measurement onto the current
local map. In addition to an aligner, a tracker has the notion
of pose inside the local map, and can operate multiple
sensor modalities. For example, a tracker might perform
an update based on odometry when no other measurement
is available. The tracker might fail due to an unsuccessful
alignment. The status of the tracker is reported by the flag
able_to_track.
Loop Detector: determines which of the already seen local

maps are similar to the current one. Appearance-based loop
detectors such as Bag-of-Words (BoW) [12], Hamming Bi-
nary Search Tree (HBST) [13] or Fast Laser Interest Region
Transform (FLIRT) [14] find sets of feasible local maps
whose landmarks’ and current measurement appearances
match. A further geometric validation is required to reject
false matches and retrieve the relative transform between
the current measurement and each matching local map. This
stage is usually performed by using an instance of aligner,
typically with different settings from the aligner used in the
tracker. Each loop closure generates a new candidate edge
in the graph that is not yet inserted into it.
Loop Validator: is the module in charge of rejecting or

accepting loop closure candidates found by the detector.
Since a non-valid loop closure can compromise the entire
mapping process, the loop validator usually performs a
delayed decision, by checking the consensus of a pool of
closures that it maintains over time. Typical schemes for

the loop closure include RANSAC based approaches [15],
or spectral clustering [16]. Using a loop validator is not
required for a basic SLAM system, but its presence greatly
enhances the system’s robustness especially in presence of
perceptual aliasing. The loop detector and the loop val-
idator report a successful computation by setting the flag
able_to_localize.
Global Optimizer: computes the configuration of nodes

in the graph that best satisfies the constraints expressed by
the edges. The valid closures passed to this module are
inserted in the graph. The optimizer can be used also to
refine the position of the map’s landmarks, as in the case
of BA. Nowadays the most common approaches rely on
sparse Iterative Least-Squares [17], [18], [19]. An uneven
distribution of the residual errors in the graph after optimiza-
tion is usually a symptom of a wrong loop closure. This is
signaled by setting the condition flag consistent_map
to false. Outlier rejection at graph level such as switchable
constraints [20] or Dynamic Covariance Scaling [21] are
available in modern optimizers.

We note that not all modules are required for every SLAM
systems depending on the type of sensor, the operating con-
ditions or the SLAM approach. However, for some systems,
a distinction between module functionalities is not always
easily identifiable. If local map construction is done with a
Kalman filter, for instance, tracking and map merging are
identical as map and robot states are always updated simul-
taneously with this approach. Similarly, some laser scanner-
based systems may not require a raw data preprocessor
or an initializer since the tracker operates on raw range
data that requires no initialization. If measurements have no
appearance information, the loop detector can just exploit
graph topology and the uncertainty in the map nodes to select
feasible closure candidates. Yet, to the best of our knowledge,
this taxonomy generalizes most of the SLAM systems of the
current state of the art. Instantiating these components alone,
however, is not sufficient as argued in Sec. I, which is why
we consider the modal aspects of a SLAM system hereafter.



IV. ANALYSIS OF THE STATE OF THE ART

In this section we analyze prominent SLAM systems with
respect to their modal behavior. For each system, we extract
the state machine from the respective publication and the
open-source implementation, if available. However, not all
systems are open-source, and even for those that are, it is not
always straightforward to extract the modal behavior just by
code inspection. Therefore, we have conducted an additional
closed-box analysis of each system to confirm correctness
of the reconstructed state machines. For completeness, we
put the diagrams extracted from the original papers that
informally illustrate the modal system aspects side-by-side
with the formal state machine - for clearness’s sake, we
discard the pseudostates in depicting these state machines. To
this end, we ran each system with a standard dataset to which
we introduced artifacts to create relevant events and corner
cases: we simulate kidnapping by suppressing large portions
of the data in the middle of the mission and sensor failures
by injecting isolated false measurements at random intervals.
We have also chosen a dataset which includes regions with
high perceptual aliasing to simulate wrong loop closures and
tracking failures.

To report the results of our analysis we consider camera-
and laser range-based SLAM systems separately. For the
analysis of camera-based systems we use the following
datasets: TUM [22] and 2D Cartographer Backpack -
Deutsches Museum [23].

A. Camera-Based Systems

We analyzed approaches that operate on monocular and
RGB-D cameras, namely: ORB-SLAM2 [3], LDSO [4],
ProSLAM [5]. Furthermore we also present the open box
analyses of SLAM++ [6] and Fusion++ [7] but we could
not perform the closed box analysis due to the unavailability
of an open source implementation. We used the same dataset
to feed both RGB-D and monocular systems. We handled the
monocular case by suppressing the depth channel from the
images.

ORB-SLAM2 [Fig. 3] supports both monocular, stereo and
RGB-D sensor streams. The first processing step consists
in extracting features from the current image. Subsequently,
only in the monocular case, an initialization step aiming
at constructing the first set of 3D points to perform visual
tracking is executed. This step is not required for stereo
or RGB-D data. Once initialized, the keypoints and the
features are used to track the position of the robot in the
current local map. Local maps are organized in a graph,
and each time the robot leaves the current local map, a
local refinement step is performed on the map landmarks.
Notably upon relocalization, local maps can be reentered and
refined again. Loop closing occurs by determining candidate
closures through BoW [12], and performing a geometric
validation. Upon a successful loop closure, an edge is added
to the graph which is consequently optimized. In this case
the tracker is loaded with the local map resulting from the
closure, and the tracking continues from that point. If the
tracking fails, the system enters a lost state where it attempts

to relocalize in the existing map. The measurements acquired
in this interval of time are dropped. Upon user request, the
system can disable the map update, resulting in a visual
localization engine.

LDSO [Fig. 4] is built on top of the successful DSO
system [24] for visual odometry. During initialization, as in
the ORB-SLAM2 mono-camera case, it provides a coarse
estimation of the pose by SfM computation. When initialized,
the mapping phase based on semi-dense visual odometry be-
gins. DSO computes the ego-motion estimation and provides
an estimated depth map of high gradient regions. SLAM is
achieved by selectively extracting salient features used to
annotate the pixels of the keypoints. Loop closure is achieved
by using BoW on the extracted keypoints, in a manner as in
ORB-SLAM2. Upon loop closure, a global map optimization
is triggered. LDSO terminates either upon user request or
when the visual odometry fails. On failure no recovery is
attempted.

ProSLAM [Fig. 5] operates on both stereo and RGB-D
data. Initialization occurs when the system is able to compute
the depth from a pair of images. In the RGB-D case, this is
verified whenever there are enough features and they are
in the depth range of the camera. The tracking is done
on local maps, by minimizing the distance between the
perceived keypoints and the corresponding ones in a local
map. Loop closure is done by using a HBST [13], and
reported closures are geometrically validated similar to ORB-
SLAM2. Similarly, a global optimization is triggered when-
ever a valid loop closure is detected. When tracking fails,
the system starts creating a new portion of the global map,
which is disconnected from the previous one. A successful
loop closing might result in rejoining disjoint portions of the
global map.

We also studied the SLAM++ [6] and Fusion++ [7]
approaches purely based on the literature because no open-
source code is available. However, we were able to under-
stand the behavior of the system thanks to the videos and the
schematics presented in the latter paper. When the system is
able to track, the mapping phase begins, and while it moves
in a known location, the system localizes itself. If it gets lost,
the system creates a new map with the incoming data and
attempts relocalization in the previous map. This results in
a behavior similar to ProSLAM.

B. Laser-Based Systems

In this section we focus our analysis on two state-of-the-art
systems: Cartographer [8] and SRRG mapper 2D [9]. The
first handles multi-echo laser scans while the second operates
on simple laser scans. To use the same multi-echo dataset
with both systems, we pre-processed the data to provide only
the most informative echo of the laser for SRRG mapper 2D.
Since no initialization is needed when working with laser
scans, both the systems do not have an initialization phase.

The Cartographer [Fig. 6] package offers distinct config-
urations for localization and mapping tasks. When mapping,
the processed data are used to build local maps. The local
map update is done via scan matching and the pose of the



Fig. 3: ORB-SLAM2: On the left the schematic system overview, on the right the reconstructed state machine.

Fig. 4: LDSO: On the left the schematic system overview, on the right the reconstructed state machine.

Fig. 5: ProSLAM: On the left the schematic system overview, on the right the reconstructed state machine.

Fig. 6: Google Cartographer: On the left the schematic system overview, on the right the reconstructed state machine.

Fig. 7: SRRG mapper 2D: On the left the schematic system overview, on the right the reconstructed state machine.

robot is tracked in the local map. Each local map is stored in
the node of a pose-graph. A local map is considered complete
when the robot is unable to introduce innovation to the
current local map. New nodes are added to the graph upon
creation. A loop detection routine searches for candidate
closures around the current local map among the neighboring
nodes. Upon successfully registration of two local maps, a
match is found and the system performs graph optimization.
The user can establish when to stop the mapping phase and
a final optimization is performed to both the map and the
trajectory. If Cartographer is in localization mode, the system
attempts to globally localize in the loaded map and sets the
robot pose to the initial estimate, if successfully relocalized.
Otherwise, the initial guess is set to the origin of the map.
From now on, a “relaxed mapping session” is performed,
where the system operates on the existing map in tracking
mode, without performing side-effect on it.

The SRRG mapper 2D architecture [Fig. 7] relies on local
maps consisting of points with normals. These normals are
extracted from the raw scan in a preprocessing stage. The
logic is similar to Cartographer in mapping mode. In addition
to it, this system dynamically prunes overlapping local maps,
to limit the dimension of the map.

C. General Considerations

From our analysis, we can argue that most of the SLAM
research systems are built to offer the best compromise
between processing time, overall precision/accuracy, and
performance, bracketing the robustness aspect. Robustness

can be achieved when some corner cases are taken into
account. Here are the highlights of this study and that we
take into account in our following formalization.

Nearly all tested systems suffer when put in corner cases.
ORB-SLAM2 and LDSO achieve impressive results in map
construction and trajectory accuracy, but they do not fully
address a recovery when lost. ORB-SLAM2 always tries to
relocalize in the previous created map while neglecting the
current measurements. Instead, LDSO does not even attempt
relocalization and stops the execution of the program. A
possible solution could be the one we find in SLAM++ and
SRRG mapper 2D, where a new map is created when the
system is lost and then the system tries to merge the current
and the previous map to create a most consistent global map.

The topic of localization is more complex than it seems.
On the one hand, localizing whenever possible is computa-
tionally more efficient. On the other hand, by doing so the
system cannot recover from failures since the measurements
gathered during localization are dropped. Some approaches
such as ORB-SLAM2 and Cartographer let the user choose in
which mode to run, but do not automatically switch between
the modes during operation. A feasible and safe solution
could be to have a localization module running when the
system is certain to move in known locations.

Finally, considering that most SLAM systems are executed
to obtain a map, having a batch optimization step that refines
the estimate to achieve the maximum accuracy is a good
feature. Notably, this is done by both Cartographer and ORB-
SLAM2.



Fig. 8: Our SLAM State Machine.

V. SLAM STATE MACHINE

In this section we complete the description of our SLAM
architecture [Fig. 8] by describing the state machine used to
govern the interplay of the components described in Sec. III.
The transitions are governed by the status variables of the
components. The states in our architecture are the following:

Interruptible: is the macro-state in which the system lives.
The only purpose of this state is to handle the interruption
requests triggered by the user or at the end of a mapping
session.
Init: captures the case when the system has been just started

or reset. In this state the initializer is invoked. The state
machine stays in this state until the initialization succeeds
(initialized). Optionally, the init can preload the SLAM
components with map and data from a previous session to
continue a suspended or aborted mission.
Idle: the system enters this state when it is initialized

or a fault occurs - e.g. not able_to_track or the
consistent_map flag was previously false. When the
robot is able_to_track a new mapping session starts.

Core: is entered as soon as the robot can track, thus
the system can both create a map and relocalize itself in
the unmerged maps, if any. The mapping and relocalization
modules run independently in two orthogonal regions.
Relocalize: is entered when a new session begins. In

this state, global localization against already seen maps is
continuously attempted. This state can be implemented by
combining a loop detector and a loop validator. Upon success
the able_to_relocalize flag is toggled.

Mapping: is the state in which the robot is exploring
an unknown area. In this state, the tracker is called for
each new measurement. Upon a successful tracking, it sets
able_to_track flag and the current local map is aug-
mented by calling the map merger. Regularly, a new local
map is generated, added to the actual global map and the
tracker reset. Whenever a new local map is generated, a
loop closure is attempted by using a loop detector and
a loop validator. able_to_localize is set to true if
any valid closure is found. Moreover, while in this state

and a relocalization event occurs, it merges localization and
relocalization closures setting the able_to_localize
flag to true.
Localized: while in this state the robot already knows the

surrounding environment. This state is entered when the loop
validator reports a valid pool of closures. Once in localized
state, all closures are added to the graph, and the global
optimizer is called. This results in highlighting potential false
closures through graph consistency check. When entering the
localized state, the tracker is loaded with the best matching
local map resulting from the closures. In this way, the number
of nodes is limited by the area explored and not by the length
of the trajectory.
Corrupted Map: is entered when an inconsistency in the

graph is detected. This may occur when the local map
in which the system is tracking does not correspond to
the measurements and is a sign that a wrong loop closure
occurred in the past. In this state, a routine runs to determine
which pool of closures is bad. This process might take time
and potentially require to reprocess past data. If the routine
fails in identifying invalid loop closures, the map is still
inconsistent and the execution of the robot should be stopped.
Otherwise, the wrong loop closures are removed and the
graph is optimized again. Finally, the idle state is entered.
Final: is entered when the mission is completed, or when

the user stops the system. In this state an optional batch map
refinement takes place and the result is stored.

VI. VALIDATION

As stated in the introduction, we hypothesize that by
addressing the modal aspects of a SLAM system, we can
enhance SLAM robustness, i.e., stable or improved perfor-
mance under wider ranges of conditions. To validate this
hypothesis we conduct two experiments in which we evaluate
the proposed state machine and compare its behavior and the
resulting maps to those of other SLAM systems.

A. Case Study: Robot Vacuum Cleaner

In the first experiment we envision a robot vacuum cleaner
that explores an unknown environment and encounters un-
foreseen events such as sensor failures, perceptual aliasing
and kidnapping. Its purpose is to demonstrate that our state
machine is able to handle those events correctly and compare
its behavior to those of other SLAM systems (Tab. II). We
assume the robot’s motion is generated by a separate system
e.g. an exploration algorithm or motion commands from the
user. Steps will be referenced as (N).

Consider Fig. 9, in which a user has bought a robot
vacuum cleaner and deploys it at home for the first time.
When the robot is turned on, it starts in the Init state,
loads the configuration file, runs the initialization routine
and enters the Idle state (0). Then, in (1), it starts exploring
the environment towards frontier A in the Mapping state.
Arrived at A (2), the robot chooses B as the next frontier to
explore, realizes that it moves in a known area and enters
the Localized state. It stays in that state until it reaches B
at (3). Then it chooses the corridor as the new frontier, starts



Step Event ORB-SLAM2 LDSO ProSLAM Cartographer SRRG Mapper 2D Our State Machine
0 User turns robot on Init Init Init Init Init Init, Idle
1 Robot explores Room 1 Mapping Mapping Mapping Mapping Mapping Mapping
2 Robot drives to corridor Mapping Mapping Mapping Mapping Mapping Localized
3 Robot explores corridor Mapping Mapping Mapping Mapping Mapping Mapping
4 Robot enters dark area Relocalization N/A Relocalization N/A Relocalization Idle
5 Robot exits dark area Relocalization N/A Mapping Mapping Relocalization Core (M&R)
6 Robot keeps on moving Relocalization N/A Mapping Mapping Relocalization Localized
7 Robot enters Room 2 Relocalization N/A Mapping Mapping Mapping Corrupted Map
8 Robot explores Room 2 Relocalization N/A Mapping Mapping Mapping Idle, Core (M&R)
9 Robot reenters Room 1 Mapping N/A Mapping Mapping Mapping Localized

10 User kidnaps robot to Room 3 Relocalization N/A Relocalization N/A Relocalization Idle
11 Robot explores Room 3 Relocalization N/A Mapping Mapping Mapping Core (M&R)
12 Robot re-enters Room 2 Relocalization N/A Mapping Mapping Mapping Localized
13 User turns robot off N/A N/A N/A Final N/A Final
14 User turns robot on Init Init Init Init Init Init, Core(M&R)

TABLE II: Comparison of SLAM state machine behavior in the case study shown in Fig. 9. States are shown in bold face as long as
the behavior is correct or optimal along the course of the experiment. The results demonstrate that the state machines of the alternative
systems are unable to handle all events correctly and that this can lead to inconsistent maps as shown in Fig. 10

Fig. 9: Case study of a robot vacuum that explores a new envi-
ronment and encounters unforeseen events such as sensor failures,
perceptual aliasing and kidnapping (see explanation in the text and
resulting state machine behaviors in Tab. II). Dashed red lines
indicate mapping phases, dotted blue lines localization phases.

exploring and enters the Mapping state until (4) where the
tracker fails, e.g. due to the lack of features or a sensor
failure. The robot gets lost, enters the Idle state and keeps
on moving. At (5) the robot is able to track again and enters
the Core (M&R) state in which it tries to relocalize in the
previously built map and creates a new map in parallel. At (6)
the robot is able to relocalize due to perceptual aliasing. It
believes to be in the corridor near door B where in fact
it is near door C. The state machine enters the Localized
state and the robot continues by moving towards door C.
Entering the room, the robot recognizes a mismatch between
its expectation and the current observation (7) which brings
the state machine into the Corrupted Map state. In this
state, the robot starts a recovery routine aiming at detecting
and removing the wrong closure. Upon successful recovery,
the map is consistent again and the robot enters the Core
(M&R) state via the Idle state at (8). When the robot reaches
Room 1 (9), it recognizes the previously explored area, enters
the Localized state and merges the maps. At (10), the user
kidnaps the robot and takes it to Room 3. From one frame to
the next, measurements become inconsistent, the tracker fails
to localize and the state machine enters the Idle state. The
robot is able to track again at (11) entering the Core (M&R)
state in which it simultaneously performs relocalization and

mapping until (12) where it relocalizes itself near door C
and enters the Localized state. When the robot reaches (13),
the user decides that the robot worked enough for now and
turns it off. The system finalizes and stores the map in the
Final state. The robot vacuum is placed in the corner in
Room 2 at (14). The next time it will be turned on again,
after initialization and map loading in the Init state, the state
machine will transition to the Idle and then the Core (M&R)
state, in which it will successfully relocalize based on the
actual sensor readings.

B. Simulated Map Experiment

In the second experiment we demonstrate the impact of
an incorrect or suboptimal state machine behavior, as shown
in (Tab. II), onto the mapping result. We implement a
simple SLAM system controlled by our state machine. In
a simulated map shown in Fig. 10, left, we deploy a virtual
robot equipped with a 2D laser range finder. Concretely, the
components of our SLAM system are as follows:
• Raw Data Preprocessor: We compute local approxima-

tions of normals to the (x, y)-points, used in the Tracker.
• Tracker: For both states, Mapping and Localized, tracking

is implemented as a 2D variant of the NICP algorithm [25].
• Map Merger: We implemented the cloud merging proce-

dure in [9], used in the Mapping state.
• Loop Detector: For the Mapping, Localized and Relo-

calized states, we implemented an Aligner that computes
correspondences using K-Nearest Neighbors supported by
a geometrical validation test between nodes in the graph.

• Global Optimizer: For this component we use g2o [17].
• The Relocalized state implements an instance of Monte

Carlo localization [26].
The Initializer and Loop Validator components as well as
the Corrupted Map and Final states were not needed for the
purpose of this experiment.

The robot starts at position (0), gets kidnapped at po-
sition (1) and taken back within the already mapped area
to (0). The second time, the robot gets kidnapped again
at position (1) and relocated outside of the mapped area
at position (2). The map built by our system is compared



Fig. 10: From left to right: Simulated ground truth map with exploration path, map generated by Cartographer, map generated by SRRG
mapper 2D, map generated by our system. Albeit the individual components of our system are rather standard, it can cope with unforeseen
events thanks to the proposed SLAM state machine.

to two laser-based SLAM system, namely Cartographer and
SRRG mapper 2D [Fig. 10]. Only the map generated with
our system is topologically correct. Both Cartographer and
SRRG mapper 2D are unable to handle the kidnapping events
leading to tracking failures and a corrupted map far away
from the ground truth.

VII. CONCLUSIONS

In this paper we present a taxonomy for the components
of a modern SLAM system and investigate the interplay
between them. To this end, we review several state-of-the-art
graph-based SLAM systems and highlighted a set of common
functionalities and behaviors. We use the UML state machine
formalism as an approach to represent and control the
interplay of the components and propose a highly modular
architecture of a generic SLAM system which we call SLAM
state machine. We propose and evaluate an instantiation of
this architecture and demonstrate in two experiments that
our state machine handles unforeseen events such as sensor
failures, perceptual aliasing and kidnapping more robustly
than the state-of-the-art SLAM systems.
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